
LLNL-TR-637873

User-Specified and Automatic
Data Layout Selection for
Portable Performance

K. Sharma, I. Karlin, J. Keasler, J. McGraw, V.
Sarkar

May 30, 2013

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

User-Specified and Automatic Data Layout Selection
for Portable Performance

Technical Report LLNL-TR-637873, Lawrence Livermore National Laboratory, May 2013
∗

Kamal Sharma§, Ian Karlin†, Jeff Keasler†, James R. McGraw†, Vivek Sarkar§

§Rice University †Lawrence Livermore National Laboratory
Houston, Texas Livermore, CA 94551
United States United States

{kgs1,vsarkar}@rice.edu {karlin1,keasler1,mcgraw1}@llnl.gov

ABSTRACT
This paper describes a new approach to managing array data
layouts to optimize performance for scientific codes. Prior
research has shown that changing data layouts (e.g., inter-
leaving arrays) can improve performance. However, there
have been two major reasons why such optimizations are
not widely used: (1) the need to select different layouts for
different computing platforms, and (2) the cost of re-writing
codes to use to new layouts. We describe a source-to-source
translation process that allows us to generate codes with
different array interleavings, based on a data layout specifi-
cation. We used this process to generate 19 different data
layouts for an ASC benchmark code (IRSmk) and 32 dif-
ferent data layouts for the DARPA UHPC challenge ap-
plication (LULESH). Performance results for multicore ver-
sions of the benchmarks with different layouts show signifi-
cant benefits on four computing platforms (IBM POWER7,
AMD APU, Intel Sandybridge, IBM BG/Q). For IRSmk,
our results show performance improvements ranging from
22.23× on IBM POWER7 to 1.10× on Intel Sandybridge.
For LULESH, we see improvements ranging from 1.82× on
IBM POWER7 to 1.02× on Intel Sandybridge. We also
developed a new optimization algorithm to recommend a
layout for an input source program and specific target ma-
chine characteristics. Our results show that the performance
of this automated layout algorithm outperforms the manual
layouts in one case and performs within 10% of the best
architecture-specific layout in all the other cases, but one.

1. INTRODUCTION
This paper describes a framework and methodology to au-
tomatically improve the performance of scientific codes run-
ning on a variety of HPC computing platforms. “Portable
performance” remains one of the most challenging problems
for scientific application developers. Achieving good per-
formance on a specific HPC platform often requires cod-
ing adjustments to fit a specific set of machine parameters
e.g., cache size, cache line size, number of registers, main
memory latency, memory bandwidth, etc. Unfortunately,
adjustments for one platform often impedes performance on
other platforms. This paper focuses on data layout optimiza-
tion, which is steadily contributing a larger impact on per-

∗Also available as Technical Report TR13-03, Department
of Computer Science, Rice University, April 2013

formance. Most programming languages require developers
to make array-of-struct (AoS) or struct-of-array (SoA) de-
cisions (or combinations thereof) early in development. For
long-lived applications, the following challenge can be en-
countered repeatedly (and now with increasing frequency):
what to do when a new architecture is introduced with a
memory subsystem that would benefit from a different data
structure layout in the program? With current languages, a
near-complete rewrite of an application at a low level is usu-
ally necessary, since each data access needs to be rewritten.
Historically, developers of large scientific codes avoid chang-
ing data layouts because it involves changing too many lines
of code, the expected benefit of a specific change is difficult
to predict, and whatever works well on one system may hurt
on another. Our approach demonstrates how these obstacles
can be avoided.

The remainder of this paper describes the development of
our scheme and the results obtained thus far. Section 2 de-
scribes a motivating example (IRSmk) with a single triple-
nested loop and 29 array variables, and shows that changing
array layouts can significantly impact performance on four
different compute platforms. Section 3 introduces TALC,
a source-to-source transformation tool and accompanying
memory management runtime, that enables us to generate
different data layouts based on guidance provided in a“meta
file”’, while imposing some restrictions on data accesses to
ensure the legality of changing data layouts. Section 4 gives
an overview of the LULESH mini-application. Section 5
presents a summary of empirical results obtained on four dif-
ferent platforms: IBM POWER7, AMD APU, Intel Sandy-
bridge, and IBM BG/Q. We used the TALC tool to gener-
ate 19 different layouts for IRSmk, and 32 different layouts
for LULESH. For IRSmk, our results show performance im-
provements ranging from 22.23× on IBM POWER7 to 1.10×
on Intel Sandybridge. For LULESH, we see improvements
ranging from 1.82× on IBM POWER7 to 1.02× on Intel
Sandybridge. The insights gained from Section 5 led to the
development of a new optimization algorithm (described in
Section 6) to recommend a good layout for a given source
program and specific target machine characteristics. Sec-
tion 7 presents results from the automated layout algorithm
showing that in all but one case it is within 10% of the best
manual architecture-specific layout and in one case better.
Finally, Section 8 summarizes related work, and Section 9

1

contains our conclusions and plans for future work.

2. MOTIVATING EXAMPLE
We use the IRSmk benchmark (a 27-point stencil loop kernel
in the ASC Sequoia Benchmark Codes [2]) as a motivating
example to illustrate the impact of data layouts on perfor-
mance. Figure 1 shows the main loop kernel of IRSmk. For
simplicity, we ignore accesses to all arrays starting with the
letter x, since they all alias to the same array with different
offsets. We also ignore array b since it only occurs in a single
write access. This leaves 27 static read accesses.

!"#$%$&&$'$&()*$+$&&$,$&(-.$+$&&//$0$1$
$$!"#$%$22$'$2()*$+$22$,$2(-.$+$22//$0$1$
$$$$!"#$%$))$'$)()*$+$))$,$)(-.$+$))//$0$1$
$$$$$$)$$$$'$))$/$22$3$24$/$&&$3$&4$+$
$$$$$$56)7$'$$8596)7$3$.8596)7$/$85:6)7$3$.85:6)7$/$85#6)7$3$.85#6)7$
$$$$$$$$$$$$/$8:96)7$3$.8:96)7$/$8::6)7$3$.8::6)7$/$8:#6)7$3$.8:#6)7$
$$$$$$$$$$$$/$8!96)7$3$.8!96)7$/$8!:6)7$3$.8!:6)7$/$8!#6)7$3$.8!#6)7$
$$$$$$$$$$$$/$:596)7$3$.:596)7$/$:5:6)7$3$.:5:6)7$/$:5#6)7$3$.:5#6)7$
$$$$$$$$$$$$/$::96)7$3$.::96)7$/$:::6)7$3$.:::6)7$/$::#6)7$3$.::#6)7$
$$$$$$$$$$$$/$:!96)7$3$.:!96)7$/$:!:6)7$3$.:!:6)7$/$:!#6)7$3$.:!#6)7$
$$$$$$$$$$$$/$;596)7$3$.;596)7$/$;5:6)7$3$.;5:6)7$/$;5#6)7$3$.;5#6)7$
$$$$$$$$$$$$/$;:96)7$3$.;:96)7$/$;::6)7$3$.;::6)7$/$;:#6)7$3$.;:#6)7$
$$$$$$$$$$$$/$;!96)7$3$.;!96)7$/$;!:6)7$3$.;!:6)7$/$;!#6)7$3$.;!#6)7+$
<$<$<$

Figure 1: IRSmk Source Code

As a preview of results to come, in Section 5 where we will
look at more layouts and thread counts we look at four dif-
ferent array layouts here to illustrate the potential for per-
formance gains on different platforms. The purpose is to
reaffirm what has been observed in past work: changing
data layouts can significantly impact execution time and its
effects are platform specific.

The default layout is the one observed in Figure 1, where the
27 arrays are stored separately (27 × 1). A simple rewrite
can change the layout by interleaving groups of three arrays,
thus producing 9 actual arrays (9× 3). Another rewrite can
interleave 9 arrays each, producing three arrays (3×9). The
final rewrite interleaves all 27 arrays into one array (1 ×
27). We ran these four versions of IRSmk on four different
platforms: IBM POWER7, AMD APU, Intel Sandybridge,
and the IBM BG/Q, using a problem size of 1003 and all
cores on each platform. The results are presented in Table 1.
All examples show positive gains for all of the layout options.
However, the performance improvement varies dramatically
across different platforms.

Platform 27 × 1 9 × 3 3 × 9 1 × 27

IBM POWER7 1.00 4.66 4.66 4.71
AMD APU 1.00 1.26 1.38 1.40

Intel Sandybridge 1.00 1.06 1.10 1.10
IBM BG/Q 1.00 1.65 2.14 2.20

Table 1: Performance improvement of different layouts
relative to baseline 27× 1 layout, for different platforms

3. TALC DATA LAYOUT FRAMEWORK
This section describes our extensions to the TALC Frame-
work [4, 17] to support user-specified and automatic data
layouts, driven by a Meta file specification. TALC stands
for Topologically-Aware Layout in C. TALC is a source-to-
source compiler translation tool and accompanying runtime

system that dramatically reduces the effort needed to ex-
periment with different data layouts. Our extended ver-
sion of TALC has been implemented in the latest version
of the ROSE [3] compiler infrastructure. In the process of
extending TALC, we have re-implemented the entire source
base, added new functionality of Automated Layouts and
extended layout transformations.

!"

#$%&'()*"
+(,&$%"

-./.0(%&0"

+(,&$%"12)'34.5"
6&$0*."70&80('"

9.%(":3;."
<(%("+(,&$%"

=0(/>?&0'()&/"
:3.;5"

62.*3@*()&/"

70&@;.5"+&&2"
A&$/%>"

B>.0"C/2$%>"

D$/)'."
+3E0(0,"

FG.*$%(E;."
70&80('"

70&80('"
H3/(0,"

6&$0*."
70&80('"

9(*I3/."
AI(0(*%.03>)*>"

J./5&0"A&'23;.0"

Figure 2: Extended TALC Framework

Figure 2 shows the overall framework. TALC can be config-
ured to run in two modes: Automated Layout and Manual
Layout. For both of these modes, a user needs to provide
some input to perform data layout transformation. In the
Automated Layout mode, the user provides a field speci-
fication. A field specification file is a simple schema file,
which specifies arrays that should be considered for trans-
formation. The field specification file is necessary because it
enables our tool to only transform the specified arrays (like
the 27 arrays in the IRSmk example discussed in Section 2).
Figure 3 shows a sample field specification file. The View
keyword is used internally to parse the data layouts. The
field keyword specifies arrays considered for layout transfor-
mation. Each field has a type associated with it, specified
by the : separator. In this example, d stands for the double
data type. Specifying the data type helps with type check-
ing array subscripts during layout transformations. More
information on the Automatic Data Layout Selection will
be provided in Section 6. For now, we will focus on the
manual layout scheme.

The Meta file specifies the data layouts TALC should pro-
duce. A Meta file can be generated either automatically or
manually. As an example, Figure 4 contains an example
of a Meta file that can be used to drive user-specified data
layouts. Unlike the field specification file in Figure 3., the
Meta file also specifies which fields should be combined into
the same array. So, this schema specifies that four arrays of
structs are desired. For example, arrays x, y and z will be
interleaved in a single array.

Data Layout transformation is a key component in the TALC
framework. The transformation accepts a C/C++ source
program and Meta file, produces an equivalent program and
changes the data layout of the specified arrays to match the

2

View node
{

Field {x:d}
Field {y:d}
Field {z:d}

...
}

Figure 3: Sample Field Specification file

View node
{

Field { x:d, y:d, z:d }
Field { xd:d, yd:d, zd:d }
Field { xdd:d, ydd:d, zdd:d }
Field { fx:d, fy:d, fz:d }

}

Figure 4: Sample TALC Meta file

Meta file. The layout transformation matches the names
and data type of the arrays before modifying the source
code. Array subscripts are automatically handled. The lay-
out transformation also rewrites the memory allocation of
the layout transforming arrays to a library call. This call
is made at the runtime thereby handling memory allocation
gracefully for the entire group in a field. The runtime library
ensures memory-aligned allocation for the array grouping.
Figure 5 shows the key portion of an input file. Figure 6
shows a stylized output file (the new array names are not
a part of TALC) generated by the layout transformation,
based on the Meta file in Figure 4.

To ensure that data layout transformations can safely be
performed TALC is that it imposes some programming re-
strictions in C/C++:

• All accesses to candidate arrays for data layout trans-
formation must be written as array[index]. The alter-
nate form, index[array] is prohibited.

• All “aliases” for the same array must use the same
name. This is especially important when passing ar-
rays by reference across functions.

• All arrays in the same field group (as specified in the
Meta file) must be of the same length.

• Only single dimensional arrays are currently supported.
Transformation of multi-dimensional arrays is a topic
for future work.

4. LULESH MINI-APPLICATION
Our application case study of data layout optimizations fo-
cuses on the Livermore Unstructured Lagrange Explicit Shock
Hydrodynamics (LULESH) mini-application [5]. Hydrody-
namics is widely used to model continuum material prop-
erties and material interactions in the presence of applied
forces. The hydrodynamics portion of an explicit time-stepping
multi-physics application might typically consume one third
of application runtime. The LULESH mini-app provides a
significantly simplified source code (∼ 2600 lines) that illus-
trates the primary arrays needed for the computation and
the structure of the loops that define how all of the arrays
are accessed to complete the calculation. The version of
the code used in these experiments uses OpenMP to run on
multiple cores of a single node computing device.

for (int Node=0; Node<numNode; ++Node) {

// Calculate new Accelerations for the Node
xdd[Node] = fx[Node] / Mass[Node];
ydd[Node] = fy[Node] / Mass[Node];
zdd[Node] = fz[Node] / Mass[Node];

// Calculate new Velocity for the Node
xd[Node] += xdd[Node] * dt ;
yd[Node] += ydd[Node] * dt ;
zd[Node] += zdd[Node] * dt ;

// Calculate new Position for the Node
x[Node] += xd[Node] * dt ;
y[Node] += yd[Node] * dt ;
z[Node] += zd[Node] * dt ;

}

Figure 5: Sample C input file.

for (int Node=0; Node<numNode; ++Node) {

// Calculate new Accelerations for the Node
Acc[Node].xdd = force[Node].x / Mass[Node];
Acc[Node].ydd = force[Node].y / Mass[Node];
Acc[Node].zdd = force[Node].z / Mass[Node];

// Calculate new Velocity for the Node
Vel[Node].xd += Acc[Node].xdd * dt ;
Vel[Node].yd += Acc[Node].ydd * dt ;
Vel[Node].zd += Acc[Node].zdd * dt ;

// Calculate new Position for the Node
Pos[Node].x += Vel[Node].x * dt ;
Pos[Node].y += Vel[Node].y * dt ;
Pos[Node].z += Vel[Node].z * dt ;

}

Figure 6: Stylized TALC output file.

LULESH arrays represent the 3D hexahedral mesh structure
that is simulating 3D physical space. See Figure 7. Three
types of data are represented in LULESH: element-centered,
node-centered and symmetry. The 19 element-centered ar-
rays represent information about the space modeled by a
hexahedron (e.g., pressure, energy, volume, and mass). The
13 node-centered arrays represent information about the cor-
ners of each hexahedron (e.g, position: x, y, z, and velocity:
xd, yd, zd). The 3 symmetry arrays represents information
about all six outside surfaces of the physics problem (not
the surfaces of each element). The problem size is set by a
single parameter: the number of elements in one dimension
of the physical space. The problem is set up as a cube, so a
problem size of 45 means 453 total elements, 463 total nodes
,and 462 symmetry locations.

The “unstructured” characteristic of LULESH imposes con-
straints on the representation of node, element and symme-
try data. See Figure 8 for a 3D example of an unstructured
mesh. At various points on the surface, three, four or five
elements may share a node. As a result, each element and
each node are assigned a unique number. Element data is
organized as a linear array, indexed by the element number.
Nodal data is handled in an identical fashion. LULESH also
contains a number of indirection arrays that enable looking
up the eight nodes that comprise the corners of a given ele-
ment and looking up the (up to) six elements sharing a face
with a given element. One additional historical factor influ-
enced the exact data layout in LULESH. LULESH attempts
to mimic how production hydro codes are written. Such

3

Figure 7: LULESH grid example, one element with its eight
nodes.

Figure 8: Example of an unstructured mesh. An unbounded
number of elements can share a node.

codes are often optimized for vector-parallel execution. To
maximize vectorization, many arrays that would normally
be considered 3D quantities (e.g., position, velocity, acceler-
ation, force) are stored as separate arrays (x, y, z, xd, yd,
zd, ...).

The LULESH algorithm provides a significant challenge for
data layout optimizations due to the physics-based uses of
the various arrays within the loops of the program. The ver-
sion of LULESH used in this study has undergone a variety
of optimizations from the original published code, includ-
ing aggressive loop fusion and elimination of temporary ar-
rays [16]. The main loop is a sequential time-step loop that
has three parts. Part one calculates new values for all node-
centered variables (∼ 60% of compute time). Part two com-
putes updated values for all element-centered data(∼ 40%
of compute time). Part three is a global reduce to deter-
mine how large of a time step can be taken for the next
iteration(< 1% of compute time). Inside the time-step loop,
the algorithm is almost fully parallel with 12 OpenMP par-
allel loops.

5. MANUAL LAYOUT RESULTS
To show the impact of data layouts on performance we ran
experiments using our two test codes on four different plat-
forms. The Linux-based systems are: Power7, AMD APU,
Intel Sandybridge and IBM BG/Q. Table 2 summarizes
the specifications of these architectures and compiler op-
tions used. For the AMD APU, we focused on the CPU and
ignored the GPU. The two codes (IRSmk and LULESH)
were both run in double precision on varying thread counts
on both platforms. Specifically, we ran IRSmk on a prob-
lem based on a 1003 mesh for 500 iterations. LULESH was
run with a problem size = 90 (i.e. 903 elements and 913

nodes). Both of these benchmarks use OpenMP for paral-
lelism, but do not allocate data in a Non Uniform Memory
Access (NUMA) aware manner and therefore we limit our
analysis to a single socket in the multi-socket Power 7 and
Sandybridge architectures.

For both codes, TALC enabled testing a vast number of
layouts, 19 for IRSmk and 31 for LULESH. To perform the
layout transformations in IRSmk, between 56 and 272 (82%)
lines of the original 330 lines of code were changed. For
the LULESH the numbers are 98 to 477 (18%) lines of the
original 2640. By using TALC, we not only were able to
reduce the arduous effort of performing manual changes, but
also eliminate the possibility of subtle bugs.

For each benchmark, we conducted extensive experiments
across different layouts on four architectures. Figure 9 shows
the nine IRSmk layouts for which we present results. Each
row ”block” represents a set of arrays(identified by column)
that have been interleaved. So, for example layout 10 is
nine real arrays containing three interleaved arrays each.
The names in each block are added simply for clarity of
this presentation. Tables 3, 4, 5 and 6 shows the results
for running IRSmk using selected thread counts on all nine
layouts on each of the four platforms. For each test case,
we report the speedup (or slowdown) of each layout against
the “base case” which is the original code, running with an
equivalent number of threads.

To understand how layouts impact the performance of IRSmk
one first needs to understand that this kernel should be
memory bound. Each iteration of the innermost loop in
Figure 1 reads one unique double from 27 arrays, writes a
single value to the b array and may read data part of x from
memory if it is not in cache already. In addition, to these
data reads only 53 FLOPs are performed along with 4 inte-
ger operations. Since each array is about 9MB, other than
x there is no chance of any other array staying within cache
between iterations. Therefore, performance should be lim-
ited by memory bandwidth. However, we see that except for
Sandybridge significant speedups occur at all thread counts
due to data layouts.

To better understand what is happening we looked at the
total bandwidth requirement for moving all 29 arrays ei-
ther from or to memory. For the 500 iterations this is
about 119 GB of data motion. For now we ignore that x
might be moved multiple times from memory and assume
good caching and determine the bandwidth limited runtime
of each system using the Stream Triad numbers [19]. For
Sandybridge which has about 40 GB/s stream bandwidth
this is just under 3s. For BG/Q with about 28 GB/s of
bandwidth this is 4.25s. For the AMD APU with about 15
GB/s this is just under 8 s. For the Power 7 there is about 13
GB/s of bandwidth implying a lower bound of 9.15s. There-
fore, we have a best case runtime for each machine.

The results of the best layout for IRS on all machines show
performance of at least 70% of optimal and over 95% on
Sandybridge. For Sandybridge the best layout is 3.05s, for
the AMD APU it is 10.04 s, for BG/Q it is 5.2 s and for the
Power 7 it is 12.52 s. BG/Q might perform slightly worse
due to in-order cores not hiding as much latency as the other

4

Table 2: Architecture and compiler specifications

Machine Architecture Specification Compiler Option
IBM Power7 Quad IBM Power 7 (eight-core 3.55 GHz processor, 32KB L1

D-Cache per core, 256KB L2 Cache, 32MB L3 Cache)
xlc v11.1 -O3 -qsmp=omp -qthreaded -qhot
-qtune=pwr7 -qarch=pwr7

AMD APU Single AMD A10-5800K APU (quad-core 3.8 GHz processor,
16KB L1 D-Cache per core, 4MB L2 Cache)

gcc v4.7.2 -O3 -fopenmp

Intel Sandybridge Dual Intel E5-2670 Sandybridge CPU (eight-core 2.6 GHz proces-
sor, 32KB L1 D-Cache per core, 256KB L2 Cache per core, 20MB
L3 Cache)

icc v12.1.5 -O3 -fast -parallel -openmp

IBM BG/Q 16 IBM PowerPC A2 cores/node, 1.6 GHz processor, 32 MB
eDRAM L2 cache

gcc v.4.4.6 -O3 -fopenmp

!"
#$

%&
'(
)*
+,
&!-

. /.
0

/.
1

/.
2

/1
0

/1
1

/1
2

/3 /4
1

/4
2

1.
0

1.
1

1.
2

11
0

11
1

11
2

13 14
1

14
2

+.
0

+.
1

+.
2

+1
0

+1
1

+1
2

+3 +4
1

+4
2

5
6 /78&.1%
9 /78&.1% /78&1,2
: /78&.1% /78&1,2 /78&428,
; /78&.1% /78&1,2 /78&428, 1,2&.1%
< /78&.1% /78&1,2 /78&428, 1,2&.1% 1,2&1,2
= /78&.1% /78&1,2 /78&428, 1,2&.1% 1,2&1,2 1,2&428,
> /78&.1% /78&1,2 /78&428, 1,2&.1% 1,2&1,2 1,2&428, +?&.1%
@ /78&.1% /78&1,2 /78&428, 1,2&.1% 1,2&1,2 1,2&428, +?&.1% +?&1,2
5A /78&.1% /78&1,2 /78&428, 1,2&.1% 1,2&1,2 1,2&428, +?&.1% +?&1,2 +?&428,
55 &&(00B
56 (00
59
5:
5;
5< C2*+?&:
5=
5>
5@ /*78 1D8,D2 +?

C2*+?&5 C2*+?&6

C2*+?&5 C2*+?&6
C2*+?&5 C2*+?&6 C2*+?&9

C2*+?&5

C2*+?&6C2*+?&5 C2*+?&9 C2*+?&:
C2*+?&5 C2*+?&6

Figure 9: IRSmk layouts selected for discussion.

5

Table 3: Speedup relative to base case on IBM Power 7 for IRSmk

IRSmk Layout ID 1 Thread 2 Threads 4 Threads 8 Threads 16 Threads 32 Threads
1 1.02 1.01 1.02 0.99 0.94 1.12
2 1.16 1.14 1.17 1.13 1.08 1.28
3 1.33 1.32 1.34 1.30 1.24 1.47
4 1.59 1.57 1.60 1.55 1.53 1.78
5 2.46 2.41 2.45 2.33 2.35 2.68
6 2.86 2.82 2.84 2.66 2.65 3.01
7 3.01 2.96 2.99 2.78 2.75 3.11
8 5.43 5.26 5.16 4.10 4.11 4.38
9 9.82 9.14 7.94 4.66 4.57 4.71
10 14.66 13.50 9.24 4.66 4.08 4.62
11 10.00 9.40 7.80 4.37 3.84 3.95
12 9.88 9.45 8.45 4.71 4.91 5.02
13 13.47 11.91 8.57 4.59 4.02 4.30
14 15.24 12.54 8.27 4.38 3.71 3.77
15 19.14 16.20 9.32 4.67 4.47 4.93
16 14.30 12.73 8.84 4.67 4.42 4.78
17 18.83 15.80 9.32 4.67 4.49 4.93
18 13.90 12.65 9.06 4.70 4.67 4.92
19 22.23 17.18 9.33 4.66 4.27 4.78

Table 4: Speedup relative to base case on AMD APU for IRSmk

IRSmk Layout ID 1 Thread 2 Threads 4 Threads
1 1.00 1.00 1.02
2 1.07 1.03 1.07
3 1.14 1.06 1.12
4 1.21 1.11 1.16
5 1.26 1.16 1.19
6 1.38 1.24 1.22
7 1.45 1.30 1.23
8 1.40 1.33 1.25
9 1.33 1.34 1.25
10 1.21 1.26 1.26
11 1.63 1.45 1.17
12 1.38 1.50 1.40
13 2.26 1.55 1.12
14 1.99 1.57 1.14
15 1.74 1.66 1.47
16 2.30 1.76 1.43
17 1.58 1.68 1.46
18 1.49 1.55 1.39
19 1.62 1.60 1.38

6

Table 5: Speedup relative to base case on Intel Sandybridge for IRSmk

IRSmk Layout ID 1 Thread 2 Threads 4 Threads 8 Threads 16 Threads
1 1.00 1.01 1.01 1.01 1.01
2 1.07 1.08 1.07 1.02 1.01
3 1.17 1.18 1.16 1.03 1.01
4 1.24 1.26 1.22 1.03 1.02
5 1.31 1.31 1.26 1.05 1.01
6 1.35 1.36 1.28 1.05 1.02
7 1.39 1.40 1.30 1.05 1.02
8 1.42 1.43 1.32 1.06 1.00
9 1.35 1.37 1.32 1.07 1.03
10 1.20 1.22 1.25 1.07 1.03
11 1.19 1.16 1.00 0.86 0.84
12 1.28 1.26 1.19 1.10 1.06
13 1.54 1.47 1.05 0.85 0.80
14 1.43 1.29 0.90 0.76 0.74
15 1.48 1.46 1.30 1.11 1.05
16 1.62 1.60 1.36 1.10 1.03
17 1.47 1.45 1.30 1.11 1.05
18 1.46 1.44 1.29 1.11 1.05
19 1.63 1.60 1.35 1.10 1.05

Table 6: Speedup relative to base case on BG/Q for IRSmk

IRSmk Layout ID 1 Thread 2 Threads 4 Threads 8 Threads 16 Threads 32 Threads 64 Threads
1 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 1.09 1.09 1.09 1.08 1.07 1.10 1.08
3 1.22 1.23 1.23 1.23 1.21 1.29 1.19
4 1.09 1.09 1.09 1.09 1.09 1.22 1.28
5 1.17 1.16 1.16 1.17 1.17 1.32 1.40
6 1.64 1.57 1.57 1.57 1.55 1.49 1.50
7 1.86 1.86 1.86 1.86 1.85 1.72 1.68
8 1.98 1.98 1.98 1.97 1.98 1.84 1.80
9 1.82 1.82 1.82 1.82 1.82 1.66 1.79
10 1.34 1.34 1.34 1.33 1.33 1.24 1.65
11 2.92 2.92 2.92 2.90 2.87 2.13 1.71
12 2.99 2.99 2.99 2.98 2.98 2.69 2.20
13 2.87 2.88 2.88 2.88 2.88 2.34 1.85
14 2.99 2.99 2.99 2.98 2.93 2.11 1.68
15 2.99 2.99 2.98 2.98 2.98 2.66 2.16
16 2.82 2.82 2.81 2.81 2.82 2.60 2.08
17 3.00 3.00 3.00 3.00 3.00 2.66 2.17
18 3.02 3.02 3.02 3.02 3.01 2.64 2.16
19 2.98 2.98 2.98 2.97 2.98 2.61 2.14

7

processors, while the AMD APU could be hurt by less data
in the x array staying in its smaller cache. Finally, all the
processors could be limited in their handling of the unequal
amount of read and write data in IRSmk.

While the best case scenarios for each processor are simi-
lar, the base case is significantly different. On the Sandy-
bridge chip, data layouts only sped up the computation by
1.11×. However, the initial code was running at over 85%
of peak memory bandwidth, so a large speedup is not pos-
sible. On the other processors, performance is significantly
worse when no data layouts are applied. From looking at the
hardware specifications the largest difference in this regard
is the number of hardware prefetch streams each processor
can keep active at once. The SandyBridge can handle 32
per core [14], while BG/Q can handle 16 per core [10], the
Power7 can handle 10 per core [22] and the AMD APU can
handle 12 per core [6]. Therefore, the Sandybridge processor
can handle all the arrays in the computation at once. How-
ever on other processors fusing arrays decreases the number
of streams coming from memory, resulting in fewer data el-
ements read in a latency-bound manner. This is especially
important for in-order cores like BG/Q. Also the Power 7
benefits significantly from fewer arrays. Other layouts that
are not shown show a trend of steadily improving perfor-
mance as more arrays are grouped. Also when a calculation
is latency bound, such as the base case, doubling the thread
count halves runtime, by doubling the number of latency
bound reads occurring concurrently. However, the mem-
ory bound layouts, that do not use all the prefetchers have
their runtime barely decrease, such as layout 19, from 2 to
8 threads.

A related trend is that improvements from data layouts are
more significant at lower core counts. This implies two con-
clusions. First compute-bound codes also benefit from data
layout transformations. In the case of Sandybridge where
there are enough stream prefetchers for the base code and
enough bandwidth to feed a few, but not all cores merg-
ing arrays reduces the number of registers used as pointers
by the compiler resulting in fewer instructions and possibly
fewer pipeline stalls. Another benefit is that the number of
elements accessed each loop from an array can be matched
to cache boundaries, such as layout 16. The second obser-
vation is that for processors with an under provisioning of
prefetchers when fewer cores are used the computation be-
comes latency-bound. With fewer cores to issue memory
requests the memory bus becomes idle for a larger percent-
age of the time. Therefore, bandwidth is used less efficiently
allowing for larger speedups when the core uses it more ef-
fectively.

A final observation is that not merging read only arrays in
a loop with arrays that are written to increases the per-
formance significantly. For IRSmk, when b was not merged
with other groups performance was better in all cases except
some single threaded examples as compared to combining it
with other arrays. The performance difference between lay-
outs 11 and 12 shows this effect. Modern architectures, such
as AMD APU, often implement a write buffer to combine
multiple writes to the same cache line to reduce the amount
of data sent to main memory. This optimization is known
as Write-Combining [1].

Tables 7, 8, 9 and 10 shows LULESH results for running the
31 layouts presented in Figure 10 on our four test platforms.
For each test case, we report the speedup (or slowdown) of
each layout against the“base case”which is the original code,
running with an equivalent number of threads.

Data layout transformations on LULESH were less prof-
itable overall than for IRSmk. This is not surprising since
some arrays in LULESH are used together in certain places
and not together in others. Therefore, combining them to-
gether will help and hurt performance simultaneously. For
example, layout 24 combines all four triples of x, y , z values
together. Many of these triples are used together in many
functions, but not all. However, most of the time layout 27
that leaves the triples separate is faster. A notable exception
is the Power7 for a single thread, which has the most cache,
but the least bandwidth. It also suffers the most from not
getting good prefetching as shown by the IRSmk results.
Probably due to a combination of these reason combining
these arrays that are often accessed indirectly, helps result
in fewer latency bound reads and fewer streams of data being
accessed helps on this chip.

The most interesting result from LULESH is that in most
cases it seems the code not the hardware is dictating the
best data layout. On the AMD APU, Intel Sandybridge
and BG/Q the list of the best layouts always includes 28,
29 and 31. However, the Power7 is an outlier with its best
layout varying across thread counts by a significant margin
for the reasons explained above.

For LULESH as with IRSmk data layouts impacted the
Sandybridge system the least with the largest speedup seen
being only 1.02×. There are a few likely reasons for this.
First as with IRSmk the Sandybridge architecture should
be able to prefetch many streams at once. Also, in the case
of bundling indirect accesses the large re-order window of
the Sandybridge might hide memory latency better than the
other chips. Finally, the Intel compiler used on this platform
was the best at generating SIMD instructions for some of the
compute bound loops of LULESH. Some of the data trans-
formations result in the compiler no longer generating SIMD
instructions and, therefore, while data layouts save on data
motion in memory-bound portions of the code they can hurt
performance in the compute bound sections.

6. AUTOMATIC DATA LAYOUT SELECTION
In this section, we describe the automatic data layout selec-
tion algorithm. The algorithm takes in a user-written field
specification file and uses a greedy approach to automati-
cally construct a data layout based on the architecture and
input program. In this section we describe the machinery
and equations used by the algorithm and then the algorithm
itself.

6.1 Use Graph
The automated analysis begins by creating a mapping of all
arrays used within each loop of the source program. We are
only interested in determining which arrays appear inside
each loop, not the exact location or order of use. So, our
Use graph is a mapping from each array name to a function
name along with the loop for the reference. In the case of
nested loops, each array points to the inner-most loop in

8

!"#$%&'(($)* +),,-.() /%-,-0.&'(($)*

!"
#$
%&
'()

&1 &) &2 &1
#

&)
#

&2
#

&1
##

&)
##

&2
##

&31 &3) &32 &0
"#

$%
4
$*
*

&*
),

,
5

&*
),

,
6

&*
),

,
7

&%1
8,

&%1
89

&%-
.$
,

&%-
.$
9

&%2
-.
$,

&%2
-.
$9

&:
%

&:
:

&9 &: &-
%-
,
;<

&- &*
*

&-
%-
,
4
$*
*

&#
-%
=

&=
"%
"

&= &=
#"

=

&$
(-
$%
>

?
@ A"*

B A"* C-%

D A"* C-% 'EE

F A"* C-% 'EE G"(E-

H A"* C-% 'EE G"(E- +),,

I A"* C-% 'EE G"(E- +),, &&&9J:

K A"* C-% 'EE G"(E- +),, &&&9J:

L A"* C-% 'EE G"(E- +),, &&&9J:

?M A"* C-% 'EE G"(E- +),, &&&9J:

?? 'EE G"(E- +),, &&&9J:

?@ G"(E- +),, &&&9J:

?B +),, &&&9J:

?D +),, &&&9J:

?F +),, &&&9J:

?H +),, &&&9J:

?I +),, &&&9J:

?K +),,

?L +),,

@M +),,

@? +),,

@@ +),,

@B +),,

@D +),,

@F A"* C-% 'EE G"(E- +),,

@H +),,

@I A"* C-% 'EE G"(E- +),,

@K A"* C-% 'EE G"(E- +),, &&&9J:

@L A"* C-% 'EE G"(E- +),, &&&9J:

BM A"* C-% 'EE G"(E- +),, &&&9J:

B? A"* C-% 'EE G"(E- +),, &&&9J:

'N." A"* C-% +),,

**J-,

O("N9?

-;<

O("N9? O("N9@ O("N9B

=J="

=J="

=J$

=J$

=J$

%J9,

%J9,

%J9,

%J9,

O("N9?

O("N9@

:%J::

:%J::

:%J::

:%J::

O("N9@O("N9B

O("N9?

%J9,

%J9,

=J="**J-,

%--

%--

%--

%--

=J="

O("N9? O("N9?

O("N9@ O("N9@

O("N9@

9:%:

O("N9? O("N9?

9:%:

%--

%-- =J$

=J$

:%J::

:%J::

:%J::

%J9,

%-- %--

%--: %--:

=J$

=J$

=J$

=J$

=J$

=J$

=J$

=J$

=J$

=J$

=J$

=J$

=J="

=J="

=J="

=J="

=J="

=J="

**J-,

**J-,

**J-,

**J-,

**J-,

=J="

=J="

=J="

=J="

=J="

O("N9@

**J-,

**J-,

**J-,

**J-,

**J-,

**J-,

**J-,

**J-,

**J-,

AC

'G

'G

O("N9?

O("N9?

O("N9?

AC'G

AC'G

AC'G

AC

AC

AC

AC

AC'

AC'G

AC'G

AC'G

AC'G

Figure 10: LULESH layouts selected for discussion.

9

Table 7: Speedup relative to base case on IBM Power 7 for LULESH

LULESH Layout ID 1 Thread 2 Threads 4 Threads 8 Threads 16 Threads 32 Threads
1 0.86 0.88 0.85 0.84 0.96 0.99
2 1.00 1.07 1.06 1.03 1.12 1.14
3 1.14 1.13 1.05 1.08 1.17 1.18
4 1.14 1.07 1.12 1.08 1.16 1.17
5 1.17 1.10 1.08 1.04 1.19 1.17
6 1.10 1.16 1.08 1.08 1.23 1.17
7 1.16 1.15 1.13 1.14 1.24 1.19
8 1.18 1.26 1.24 1.10 1.27 1.26
9 1.26 1.34 1.32 1.16 1.34 1.31
10 1.29 1.28 1.25 1.20 1.45 1.36
11 1.34 1.43 1.30 1.31 1.41 1.36
12 1.33 1.41 1.36 1.16 1.33 1.25
13 1.28 1.27 1.20 1.02 1.16 1.00
14 1.33 1.30 1.24 1.05 1.19 1.03
15 1.47 1.45 1.25 1.07 1.22 1.05
16 1.46 1.58 1.46 1.14 1.29 1.07
17 1.61 1.44 1.47 1.12 1.29 1.06
18 1.47 1.44 1.36 1.09 1.25 1.03
19 1.45 1.56 1.39 1.00 1.11 0.98
20 1.53 1.49 1.46 1.27 1.45 1.23
21 1.69 1.50 1.44 1.26 1.48 1.25
22 1.68 1.51 1.42 1.23 1.42 1.22
23 1.51 1.48 1.37 1.14 1.39 1.15
24 1.54 1.36 1.19 0.84 0.92 0.84
25 1.11 1.12 1.08 1.11 1.26 1.19
26 1.44 1.39 1.30 0.90 1.02 0.90
27 1.44 1.40 1.39 1.05 1.24 1.13
28 1.38 1.50 1.45 1.35 1.55 1.42
29 1.45 1.43 1.54 1.42 1.62 1.45
30 1.25 1.24 1.30 1.23 1.33 1.29
31 1.59 1.44 1.41 1.43 1.63 1.48

10

Table 8: Speedup relative to base case on AMD APU for
LULESH

LULESH Layout ID 1 Thread 2 Threads 4 Threads
1 1.00 1.02 1.00
2 1.18 1.21 1.24
3 1.27 1.30 1.27
4 1.31 1.29 1.30
5 1.32 1.30 1.30
6 1.33 1.30 1.30
7 1.40 1.38 1.36
8 1.46 1.45 1.34
9 1.43 1.47 1.40
10 1.53 1.43 1.42
11 1.48 1.47 1.41
12 1.47 1.45 1.40
13 1.50 1.40 1.34
14 1.50 1.43 1.33
15 1.51 1.43 1.33
16 1.50 1.45 1.34
17 1.56 1.45 1.34
18 1.55 1.48 1.33
19 1.51 1.41 1.29
20 1.56 1.46 1.41
21 1.57 1.44 1.39
22 1.55 1.49 1.42
23 1.56 1.49 1.38
24 1.47 1.44 1.27
25 1.34 1.30 1.34
26 1.44 1.37 1.30
27 1.53 1.52 1.43
28 1.57 1.53 1.50
29 1.57 1.54 1.51
30 1.45 1.45 1.43
31 1.61 1.47 1.41

Table 9: Speedup relative to base case on Intel Sandybridge
for LULESH

LULESH
Layout ID

1
Thread

2
Threads

4
Threads

8
Threads

16
Threads

1 0.99 1.00 0.97 1.00 1.00
2 1.02 1.02 1.02 1.02 1.02
3 1.01 1.02 1.02 1.02 1.02
4 1.02 1.02 1.02 1.02 1.02
5 1.02 1.02 1.02 1.02 1.02
6 1.02 1.02 1.02 1.02 1.02
7 1.02 1.02 1.02 1.02 1.02
8 1.02 1.02 1.02 1.02 1.02
9 1.02 1.02 1.02 1.02 1.02
10 1.02 1.02 1.02 1.02 1.02
11 1.02 1.02 1.02 1.02 1.02
12 1.00 1.01 1.01 0.99 0.97
13 0.97 1.00 0.98 0.92 0.88
14 1.00 1.00 0.98 0.93 0.84
15 1.00 1.00 0.98 0.92 0.84
16 1.00 1.00 0.99 0.93 0.84
17 1.00 1.00 0.99 0.93 0.84
18 1.00 1.00 0.94 0.90 0.82
19 0.99 0.99 0.97 0.90 0.78
20 1.02 1.02 1.01 0.95 0.93
21 1.01 1.01 1.00 0.93 0.90
22 1.02 1.00 1.00 0.97 0.89
23 0.99 1.01 0.99 0.94 0.82
24 0.97 0.97 0.88 0.86 0.68
25 1.02 1.02 1.02 1.02 1.02
26 0.98 0.99 0.96 0.88 0.72
27 1.00 1.00 0.98 0.95 0.83
28 1.02 1.02 1.02 1.02 1.02
29 1.02 1.02 1.02 1.02 1.01
30 0.99 0.99 0.96 0.94 0.91
31 0.99 0.99 0.96 0.94 0.89

11

Table 10: Speedup relative to base case on BG/Q for LULESH

LULESH Layout ID 1 Thread 2 Threads 4 Threads 8 Threads 16 Threads 32 Threads 64 Threads
1 1.00 1.00 1.00 1.00 1.00 1.00 1.01
2 1.09 1.09 1.09 1.09 1.09 1.09 1.05
3 1.13 1.13 1.13 1.13 1.13 1.12 1.08
4 1.13 1.13 1.13 1.12 1.14 1.12 1.08
5 1.13 1.13 1.14 1.14 1.14 1.12 1.08
6 1.14 1.14 1.14 1.14 1.14 1.13 1.08
7 1.13 1.13 1.14 1.14 1.14 1.12 1.08
8 1.14 1.14 1.14 1.14 1.15 1.13 1.08
9 1.14 1.14 1.14 1.14 1.14 1.13 1.09
10 1.14 1.14 1.14 1.12 1.15 1.13 1.08
11 1.12 1.12 1.12 1.12 1.13 1.16 1.12
12 1.12 1.12 1.12 1.11 1.12 1.14 1.09
13 1.11 1.11 1.11 1.11 1.11 1.13 1.06
14 1.11 1.13 1.11 1.11 1.11 1.13 1.06
15 1.11 1.11 1.11 1.11 1.11 1.13 1.06
16 1.11 1.11 1.12 1.12 1.12 1.14 1.02
17 1.11 1.11 1.12 1.12 1.12 1.14 1.02
18 1.11 1.11 1.11 1.12 1.12 1.14 1.04
19 1.11 1.11 1.12 1.11 1.11 1.12 1.00
20 1.13 1.13 1.13 1.13 1.14 1.16 1.08
21 1.13 1.13 1.13 1.13 1.13 1.15 1.07
22 1.13 1.13 1.13 1.13 1.13 1.15 1.05
23 1.13 1.13 1.13 1.13 1.13 1.13 1.04
24 1.12 1.12 1.12 1.11 1.10 1.09 0.96
25 1.13 1.13 1.13 1.13 1.14 1.13 1.08
26 1.11 1.11 1.12 1.11 1.10 1.10 0.98
27 1.14 1.14 1.14 1.14 1.13 1.09 0.97
28 1.14 1.14 1.14 1.15 1.15 1.14 1.09
29 1.14 1.15 1.15 1.15 1.15 1.14 1.09
30 1.13 1.13 1.14 1.14 1.14 1.12 1.08
31 1.14 1.15 1.15 1.15 1.15 1.13 1.10

12

which the reference occurs. Multiple references to the same
array in a loop are not distinguished; however, we do keep
track of the types of accesses that occur: R, W, R/W. If
a reference does not appear in a loop, we use its function
name, to capture situations where the function call occurs
inside a loop.

Field { x DOUBLE }

CollectElemPositions:200

LagrangeNodal:986

Field { y DOUBLE }

Field { z DOUBLE }

Field { xd DOUBLE }
CollectElemVelocities:218

Field { yd DOUBLE }

Field { zd DOUBLE }

Field { xdd DOUBLE }

ApplyAccelerationBoundaryConditionsForNodes
:916

CalcAccelerationForNodes:893

Field { ydd DOUBLE }

Field { zdd DOUBLE }

Figure 11: Sample Use Graph

Our Use graph is a bipartite graph G=(U,V,E) where U
is set of arrays, V is set of uses of array references (func-
tion name and innermost loop) and E denotes a given array
is used in a function of source program. Figure 11 shows
a small subset of a sample Use graph. The left entries
(U) denoted by Field corresponds to the arrays as speci-
fied in the user specification file. The array data type is
also mentioned in the entry. The right entries (V) denote
function names with loop statement number. This graph
aids in easy identification of common array accesses across
the loops. Use graph helps in processing other components
of the automated layout algorithm to generate the best lay-
out. For example, if two arrays never share a common use,
they are not likely candidates for merging. From the sam-
ple graph, it is clear that merging of arrays for layouts is
a non-trivial problem. For example, arrays x, y and z are
exclusively used in CollectElemPositions function and jointly
used in LangrangeNodal function with arrays xd, yd, zd, xdd,
ydd and zdd. Merging these two arrays sets would lead to
better locality for LangrangeNodal, but lead to additional
lines being fetched in CollectElemPositions. Complexity of
automated layout also increases with more arrays and func-
tion references. These constraints pose a difficult choice to
the automated algorithm. An expert programmer will have
to make such choice to select an appropriate layout. Even if
the programmer wishes to experiment with a manual layout,
he may wish to generate a Use graph to better understand
the relationship amongst arrays in an automated way.

6.2 Affinity Graph
The Use graph shows the relationship between arrays and
its function uses. However, in order to quantify the merging
between arrays, we need a relationship amongst arrays. An
Affinity graph represents the commonality of uses between
different arrays across all functions. The number of com-
mon iteration accesses determines closeness across the array
group. Our Affinity graph builds upon the Use graph to
determine the common function accesses.

Figure 12 shows a sample affinity graph. Each node rep-

Field { x DOUBLE }
 Uses 3.69794e+10

Field { y DOUBLE }
 Uses 3.69794e+10

3.69794e+10

Field { z DOUBLE }
 Uses 3.69794e+10

3.69794e+10

Field { xd DOUBLE }
 Uses 2.5158e+10

1.52673e+09

Field { yd DOUBLE }
 Uses 2.5158e+10

1.52673e+09

Field { zd DOUBLE }
 Uses 2.5158e+10

1.52673e+09

3.69794e+10

1.52673e+09

1.52673e+09

1.52673e+09

1.52673e+09

1.52673e+09

1.52673e+092.5158e+10

2.5158e+10

2.5158e+10

Figure 12: Sample Affinity Graph

resents a unique array with the number of uses across the
whole program. Link value between the arrays denotes the
number of common uses between them. Profiling the rele-
vant loops across the functions collects the number of uses.
With this information and Use graph, we can construct the
affinity graph with all the populated values. In the sample
graph, array x and y, both have number of uses as 3.69e+10
and share a link with value 3.69e+10. This indicates that
both arrays have all the references appearing together and
are strong candidates for array merging. Looking at array z
and xd, we find that they have a lot of common accesses but
do have other uses as well. Based on constraints, we may or
may not want to merge these arrays together.

6.3 Affinity Index
The Affinity Graph helps us understand the relationship be-
tween the arrays and their uses. However, we need a math-
ematical term to denote the affinity i.e. closeness between
the arrays. Affinity Index is defined as the closeness factor
among a set of arrays in a subgraph. Our algorithm uses the
affinity index by merging two array groups (or a subgraph),
if the affinity index of a subgraph meets a threshold.

Before defining affinity index, let us define another term link
index. Given two array references x and y with its uses, Usex
and Usey and a link between them with a value LV , then,

LinkIndex =
LV

Usex
+

LV

Usey
(1)

In Figure 12, LinkIndex = 2 for arrays x and y, whereas
LinkIndex = 0.10 for arrays xd and z. We state a Link
Value property as follows:

Property 1: LinkV alue(LV) ≤ min(Usex, Usey)

Now, we define Affinity Index in terms of Link Index from
Equation 1 as follows,

AffinityIndex =

∑numLinks
i=1 LinkIndexi

2 ∗ numLinks
(2)

13

where numLinks denotes the number of links present in a
subgraph. In Figure 12, AffinityIndex=1 for arrays x and y.
Note that AffinityIndex still remains 1 for arrays x, y and z
as well, since all of them always share a common loop.

6.4 Cache-Use Factor(CUF)
Affinity index indicated association between arrays. To indi-
cate the cache impact of a possible merging of array groups,
we define a second term Cache-Use Factor. We explicitly
use dynamic loop counts from the profiled data with Use
graph to calculate cache-use factor. This factor indicates
the appropriate uses of cache lines fetched during a loop
execution. On merging two arrays groups, cache-use fac-
tor may be lowered since all array accesses might not be
used across the loops. For example in Figure 11, merging
of array groups x,y,z and xdd,ydd,zdd might lead to a low
cache-use factor, since these groups just share a single loop
LagrangeNodal in common.

Before defining cache-use factor, we define another term
cache-loop factor (CLF). Given an array group A (i.e. set of
arrays) and loop L, cache-loop factor is defined as follows,

CLF =
|{A} ∩ { array references in L }|

LC
(3)

where LC denotes the loop count of loop L. Now, we define
Cache-Use Factor in terms of Cache-Loop Factor as follows,

CUF =

∑numLoops
i=1 CLFi∑numLoops
i=1 LCi

,where LCi = 0 if CLFi = 0

(4)

For the base case, where all array are separate, we have
CUF = 1. However, as we merge array groups the CUF
value might lie somewhere between 0 and 1, with 1 indi-
cating better cache line use. This might lead us to refrain
from merging some arrays, as we desire the highest CUF.
However, merging helps in better register use and locality of
elements as we have seen in Section 5.

6.5 Automatic Data Layout Algorithm
Our Automated Data Layout Algorithm uses the affinity in-
dex, cache-use factors, and platform characteristics to pro-
duce a meta file that contains the recommended data layout.
Algorithm 1 shows our Automated Data Layout Algorithm.
To begin, each array in the Field Specification is its own
ArrayGroup. The algorithm compares all pairs of Array-
Groups to determine the viability and value of merging each
pair. The pair with the highest combined value (affinity and
cache-use factor)are merged into one new group. The two
selected array groups are merged into one new group. This
process is repeated until the best candidate pair for merging
falls below the acceptable merge threshold. After the final
grouping is determined, each group’s arrays are sorted based
on data type, to better pack them. The final step performs
cache line splitting to efficiently utilize each cache line fetch
for the target platform.

The evaluation of the viability and value of merging two
candidate ArrayGroups considers two factors. The first con-
sideration examines reads versus writes to an ArrayGroup.

Platform
IRSmk LULESH

Best
Manual
Layout

Automated
Layout

Best
Manual
Layout

Automated
Layout

Power7-
8Threads

4.70 4.67 1.43 1.58

Power7-
32Threads

5.02 4.93 1.47 1.19

AMD APU-
4Threads

1.46 1.43 1.50 1.46

Sandybridge-
8Threads

1.11 1.10 1.02 0.96

Sandybridge-
16Threads

1.05 1.03 1.02 0.91

BG/Q-
64Threads

2.20 2.08 1.10 1.04

Table 11: Best Manual Layout vs. Automated Layout
speedup as compared to base layout

Our manual results (Section 5) showed that grouping ar-
rays written to frequently with arrays that are read only
decreases performance significantly. Our current heuristic
prohibits combining any ArrayGroup when that group has
more than 2× more writes than reads. The second consid-
eration for merging ArrayGroups computes a new Affinity
index and cache use factor for the proposed combination. If
both values are greater than our established thresholds, the
ArrayGroups are viable for merging. From our empirical
results, we have chosen, an affinity threshold = 0.62 and a
Cache Use threshold = 0.52 for our algorithm. A detailed
analysis to study the effects of varying these parameters
across architectures and benchmarks must be left as future
work.

7. AUTOMATIC DATA LAYOUT RESULTS
Table 11 shows the results for best manual layouts and auto-
mated layouts in comparison to base layout. Results demon-
strate that automated layouts were within 95-99% of best
manual layout for IRSmk, and within 89% of best manual
layout for LULESH except on the Power 7 where it performs
better than the manual layouts on 8 threads and performs
about 20% worse on 32 threads. These results prove the
effectiveness of our automated results. Our automated re-
sults also show more significant improvements for on-chip
accesses across the architectures (8 Threads on Power7 and
Sandybridge) in comparison to off-chip counterparts. In one
particular case, 8 Threads on Power7 for LULESH, auto-
mated layout improved performance as compared to manual
layouts. These architectures exhibit NUMA behavior, which
our automated algorithm doesn’t consider for this work. We
believe that either extending our algorithm to incorporate
memory allocation or using NUMA libraries for memory al-
location would further increase layout performance on these
architectures. However, for this work, we only used the de-
fault memory allocation provided on these systems.

8. RELATED WORK
Past research has proposed various data layout optimization
techniques [7–9,11]. Here, we present a brief survey of past
work, focusing on aspects that are most closely related to
our work.

Zhang et al. [24] introduced a data layout framework that
targets on-chip cache locality, specifically reducing shared

14

Algorithm 1 Automated Data Layout Algorithm

1: procedure IsMerge(ArrayGroupi, ArrayGroupj)
2: if SignificantWrites(ArrayGroupi) ‖ SignificantWrites(ArrayGroupj) then
3: return false
4: end if
5:
6: if AffinityIndex (ArrayGroupi, ArrayGroupj) ≥ AFFINITYTHRESHOLD &&
7: CacheUseFactor(ArrayGroupi, ArrayGroupj) ≥ CACHEUSETHRESHOLD) then
8: return true
9: end if

10:
11: return false
12: end procedure
13:
14: procedure AutoDataLayout(ArrayGroupList)
15:
16: while change = true do
17: change← false
18:
19: for i ∈ ArrayGroupList do
20: for j ∈ ArrayGroupList do
21: if IsMerge(ArrayGroupi,ArrayGroupj) then
22: change← true
23: affinityIndex(i, j)← AffinityIndex(ArrayGroupi, ArrayGroupj)
24: cacheUseFactor(i, j)← CacheUseFactor(ArrayGroupi, ArrayGroupj)
25: end if
26: end for
27: end for
28:
29: if change = true then
30: index← getBestAffinityCacheUsePair(affinityIndex, cacheUseFactor)
31: ArrayGroupij ← mergeGroups(ArrayGroupindex-i, ArrayGroupindex-j)
32: ArrayGroupList← ((ArrayGroupList−ArrayGroupindex-i)−ArrayGroupindex-j) ∪ArrayGroupij
33: end if
34: end while
35:
36: sortGroups(ArrayGroupList)
37: splitCacheLine(ArrayGroupList)
38: return ArrayGroupList
39: end procedure

15

cache conflicts while observing data patterns across threads.
Using polyhedral analysis, their framework rearranges data
layout tiles to reduce on-chip shared cache conflicts. How-
ever, their optimization currently works with single arrays.
In contrast, our approach works on merging multiple arrays
and operates at the element level rather than tiles.

Henretty et al. [13] presented a data layout framework to op-
timize stencil operations on short-SIMD architectures. Their
work specifically targets stream alignment conflicts on vector
registers and uses a dimension transposition method (non-
linear data layout optimization) to mitigate the conflicts. In
comparison, our approach works for more general applica-
tions, not just stencil code. Also, our work did not specifi-
cally address the impact of data layout on vectorization.

Ding and Kennedy [11] introduced a data-regrouping algo-
rithm, which has similarities to our work on automatic selec-
tion of data layouts. Their compiler analysis merges multi-
dimensional arrays based on a profitability cache analysis.
Dynamic regrouping was also provided for layout optimiza-
tion at runtime. Experimental results show significant im-
provement in cache and TLB hierarchy. However, their re-
sults were all obtained on uniprocessor systems and it is
unclear how their approach works in the presence of data
aliasing.

Raman et al. [21] used data layout transformations to re-
duce false sharing and improve spatial locality in multi-
threaded applications. They use an affinity based graph ap-
proach (similar to our approach) to select candidates. Inter-
procedural aliasing issues arising due to pointers is not ad-
dressed in this work. Our work is intended to explore data
layout transformations more broadly, not just for false shar-
ing and spatial locality. Using polyhedral layout optimiza-
tion, Lu et al. [18] developed a data layout optimization
for future NUCA CMP architectures. Their work reduces
shared cache conflict on such architectures. Simulation re-
sults show significant reductions in remote accesses. Finally,
a number of papers, [12, 15, 20, 23] have explored the inte-
gration of loop and data layout transformations.

To the best of our knowledge, our work is the first to sup-
port both user-specified and automatic AoS and SoA data
layout transformations, while allowing the user to provide a
data layout specification file. Our results on the LULESH
mini-application demonstrates the importance of data lay-
out transformations on modern multicore processors.

9. CONCLUSIONS
This paper establishes the foundation for a new approach to
supporting portable performance of scientific codes across
HPC platforms. The upgraded TALC source-to-source trans-
formation tool permits application developers to maintain
one ”neutral” data layout source code and explore architec-
ture specific array layouts. The new automated portion of
TALC can analyze the original source code based on plat-
form characteristics and produces a new source code with
new array data layouts ready to be compiled and run on
that system. The results for the two test codes show that
maunal layouts improve performance by 1.10× to 22.23×
for IRSmk and 1.02× to 1.82× for LULESH with results
varying with thread count and architecture. The automated

algorithm resulted in performance of 95-99% of the best lay-
out manual layout for IRSmk. For LULESH the automated
approach was better than any manually tried layout for 8
threads on the Power 7 and within 10% of the best layout
on all other processors except for 32 threads of the Power
7 where NUMA effects might cause the automated layout
selection to be sub-optimal.

This work represents a first step in this approach to portable
performance. Opportunities for future work abound. One
direction expands the flexibility of constraints on the original
source code to include manipulation of multi-dimensional
arrays. For many applications, it could be highly useful to
reorder dimensions of multi-dimensional arrays, sub-divide
those arrays, and interleave them with compatible arrays
of different dimensions. Another direction of future work
is to study a broader range of platforms, particularly GPU
systems, where there can be mirrored copies of arrays that
might benefit from different layouts on the heterogeneous
cores. We also need to study a much richer range of scien-
tific source codes. The conditions set up by different codes
will almost certainly require improvements to the heuristics
current in the automated TALC section. A key aspect of
looking at different codes will be the examination of actual
array subscript usage within loops to compute more accurate
affinities. We look forward to pursuing these challenges.

10. ACKNOWLEDGEMENTS
This work was performed under the auspices of the U.S. Depart-
ment of Energy by Lawrence Livermore National Laboratory un-
der Contract DE-AC52-07NA27344.

11. REFERENCES
[1] AMD64 Architecture Programmer’s Manual Volume 2:

System Programming.
[2] ASC Sequoia Benchmark Codes.

https://asc.llnl.gov/sequoia/benchmarks/.
[3] ROSE Compiler Infrastructure.

http://rosecompiler.org/.
[4] TALC Infrastructure.

https://wci.llnl.gov/codes/talc/.
[5] Hydrodynamics Challenge Problem. Technical Report

LLNL-TR-490254, Lawrence Livermore National
Laboratory, Livermore, CA, USA, July 2011.
https://computation.llnl.gov/casc/ShockHydro.

[6] AMD. Software Optimization Guide for AMD Family
15h Processors. Technical Report 47414, January 2012.

[7] B. Calder, C. Krintz, S. John, and T. Austin.
Cache-conscious data placement. In Proceedings of the
eighth international conference on Architectural
support for programming languages and operating
systems, ASPLOS VIII, pages 139–149, New York,
NY, USA, 1998. ACM.

[8] T. M. Chilimbi, M. D. Hill, and J. R. Larus.
Cache-conscious structure layout. In Proceedings of the
ACM SIGPLAN 1999 conference on Programming
language design and implementation, PLDI ’99, pages
1–12, New York, NY, USA, 1999. ACM.

[9] T. M. Chilimbi and R. Shaham. Cache-conscious
coallocation of hot data streams. In Proceedings of the
2006 ACM SIGPLAN conference on Programming
language design and implementation, PLDI ’06, pages
252–262, New York, NY, USA, 2006. ACM.

[10] I. Chung, C. Kim, H.-F. Wen, G. Cong, et al.
Application data prefetching on the IBM blue gene/Q
supercomputer. In High Performance Computing,
Networking, Storage and Analysis (SC), 2012

16

International Conference for, pages 1–8. IEEE, 2012.
[11] C. Ding and K. Kennedy. Inter-array data regrouping.

In Proceedings of the 12th International Workshop on
Languages and Compilers for Parallel Computing,
LCPC ’99, pages 149–163, London, UK, UK, 2000.
Springer-Verlag.

[12] C. Ding and K. Kennedy. Improving effective
bandwidth through compiler enhancement of global
cache reuse. In Proceedings of the 15th International
Parallel & Distributed Processing Symposium, IPDPS
’01, pages 38–, Washington, DC, USA, 2001. IEEE
Computer Society.

[13] T. Henretty, K. Stock, L.-N. Pouchet, F. Franchetti,
J. Ramanujam, and P. Sadayappan. Data layout
transformation for stencil computations on
short-vector simd architectures. In Proceedings of the
20th international conference on Compiler
construction: part of the joint European conferences
on theory and practice of software, CC’11/ETAPS’11,
pages 225–245, Berlin, Heidelberg, 2011.
Springer-Verlag.

[14] Intel. Intel 64 and IA-32 Architectures Optimization
Reference Manual. Technical Report 248966-026, April
2012.

[15] M. Kandemir, A. Choudhary, J. Ramanujam, and
P. Banerjee. A framework for interprocedural locality
optimization using both loop and data layout
transformations. In Proceedings of the 1999
International Conference on Parallel Processing, ICPP
’99, pages 95–, Washington, DC, USA, 1999. IEEE
Computer Society.

[16] I. Karlin, J. McGraw, J. Keasler, and C. Still. Tuning
the LULESH Mini-app for Current and Future
Hardware. In Nuclear Explosive Code Development
Conference Proceedings (NECDC12), December 2012.

[17] J. Keasler, T. Jones, and D. Quinlan. TALC: A
Simple C Language Extension For Improved
Performance and Code Maintainability. In 9th LCI
International Conference on High-Performance
Clustered Computing, April 2008.

[18] Q. Lu, C. Alias, U. Bondhugula, T. Henretty,
S. Krishnamoorthy, J. Ramanujam, A. Rountev,
P. Sadayappan, Y. Chen, H. Lin, and T.-f. Ngai. Data
layout transformation for enhancing data locality on
nuca chip multiprocessors. In Proceedings of the 2009
18th International Conference on Parallel
Architectures and Compilation Techniques, PACT ’09,
pages 348–357, Washington, DC, USA, 2009. IEEE
Computer Society.

[19] J. D. McCalpin. Memory Bandwidth and Machine
Balance in Current High Performance Computers.
IEEE Computer Society Technical Committee on
Computer Architecture (TCCA) Newsletter, pages
19–25, Dec. 1995.

[20] M. F. P. O’Boyle and P. M. W. Knijnenburg. Efficient
parallelization using combined loop and data
transformations. In Proceedings of the 1999
International Conference on Parallel Architectures and
Compilation Techniques, PACT ’99, pages 283–,
Washington, DC, USA, 1999. IEEE Computer Society.

[21] E. Raman, R. Hundt, and S. Mannarswamy. Structure
layout optimization for multithreaded programs. In
Proceedings of the International Symposium on Code
Generation and Optimization, CGO ’07, pages
271–282, Washington, DC, USA, 2007. IEEE
Computer Society.

[22] B. Sinharoy, R. Kalla, W. Starke, H. Le, R. Cargnoni,
J. Van Norstrand, B. Ronchetti, J. Stuecheli,
J. Leenstra, G. Guthrie, et al. IBM POWER7
multicore server processor. IBM Journal of Research
and Development, 55(3):1–1, 2011.

[23] M. Taylan Kandemir. Improving whole-program

locality using intra-procedural and inter-procedural
transformations. J. Parallel Distrib. Comput.,
65(5):564–582, May 2005.

[24] Y. Zhang, W. Ding, J. Liu, and M. Kandemir.
Optimizing data layouts for parallel computation on
multicores. In Proceedings of the 2011 International
Conference on Parallel Architectures and Compilation
Techniques, PACT ’11, pages 143–154, Washington,
DC, USA, 2011. IEEE Computer Society.

17

